M-FUZZIFYING INTERVAL SPACES

نویسندگان

  • Fu-Gui Shi chool of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R. China
  • Zhen-Yu Xiu College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610000, P.R. China
چکیده مقاله:

In this paper,  we introduce  the notion of $M$-fuzzifying interval spaces, and discuss the relationship between $M$-fuzzifying interval spaces and $M$-fuzzifying convex structures.It is proved that  the category  {bf MYCSA2}  can be embedded in  the category  {bf  MYIS}  as a reflective subcategory, where  {bf MYCSA2} and   {bf  MYIS} denote  the category of $M$-fuzzifying convex structures of  $M$-fuzzifying  arity $leq 2$  and  the category of $M$-fuzzifying interval spaces, respectively. Under the framework of $M$-fuzzifying interval spaces,   subspaces and product spaces   are presented  and  some of their fundamental  properties are obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m-fuzzifying interval spaces

in this paper,  we introduce  the notion of $m$-fuzzifying interval spaces, and discuss the relationship between $m$-fuzzifying interval spaces and $m$-fuzzifying convex structures.it is proved that  the category  {bf mycsa2}  can be embedded in  the category  {bf  myis}  as a reflective subcategory, where  {bf mycsa2} and   {bf  myis} denote  the category of $m$-fuzzifying convex structures of...

متن کامل

M-FUZZIFYING TOPOLOGICAL CONVEX SPACES

The main purpose of this paper is to introduce the compatibility of $M$-fuzzifying topologies and $M$-fuzzifying convexities, define an $M$-fuzzifying topological convex space, and give a method to generate an $M$-fuzzifying topological convex space. Some characterizations of $M$-fuzzifying topological convex spaces are presented. Finally, the notion of $M$-fuzzifying weak topologies is obtaine...

متن کامل

BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES

Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with  $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...

متن کامل

Fuzzifying Strongly Compact Spaces and Fuzzifying Locally Strongly Compact Spaces

In this paper, some characterizations of fuzzifying strong compactness are given, including characterizations in terms of nets and pre -subbases. Several characterizations of locally strong compactness in the framework of fuzzifying topology are introduced and the mapping theorems are obtained.

متن کامل

M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS

In this paper, the notion of closure operators of matroids  is generalized to fuzzy setting  which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...

متن کامل

Completely regular fuzzifying topological spaces

The concept of a fuzzifying topology was given in [1] under the name L-fuzzy topology. Ying studied in [9, 10, 11] the fuzzifying topologies in the case of L = [0,1]. A classical topology is a special case of a fuzzifying topology. In a fuzzifying topology τ on a set X , every subset A of X has a degree τ(A) of belonging to τ, 0 ≤ τ(A) ≤ 1. In [4], we defined the degrees of compactness, of loca...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 1

صفحات  145- 162

تاریخ انتشار 2017-02-28

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023